For any video codecs, the coding efficiency highly relies on whether the current signal to be encoded can find the relevant contexts from the previous reconstructed signals. Traditional codec has verified more contexts bring substantial coding gain, but in a time-consuming manner. However, for the emerging neural video codec (NVC), its contexts are still limited, leading to low compression ratio. To boost NVC, this paper proposes increasing the context diversity in both temporal and spatial dimensions. First, we guide the model to learn hierarchical quality patterns across frames, which enriches long-term and yet high-quality temporal contexts. Furthermore, to tap the potential of optical flow-based coding framework, we introduce a group-based offset diversity where the cross-group interaction is proposed for better context mining. In addition, this paper also adopts a quadtree-based partition to increase spatial context diversity when encoding the latent representation in parallel. Experiments show that our codec obtains 23.5% bitrate saving over previous SOTA NVC. Better yet, our codec has surpassed the under-developing next generation traditional codec/ECM in both RGB and YUV420 colorspaces, in terms of PSNR. The codes are at https://github.com/microsoft/DCVC.


翻译:对于任何视频编码器,编码效率高度取决于当前要编码的信号能否从先前重建的信号中找到相关背景。传统编码器已经核实了更多的背景,带来了大量编码收益,但需要花费时间。然而,对于新兴神经视频编码(NVC)而言,其背景仍然有限,导致压缩率低。为了提升NVC,本文提议在时间和空间两个层面增加背景多样性。首先,我们指导模型学习跨框架的等级质量模式,这丰富了长期和高品质的时间背景。此外,为了挖掘光源流编码框架的潜力,我们引入了基于集团的抵消多样性,其中提议进行跨集团的互动,以更好地进行背景采矿。此外,本文还采用了基于树的四边分隔法,以便在同时将潜在代表配置相加时,增加空间背景多样性。实验显示我们的代码比前SOTA NVC获得23.5%的比特拉节储蓄。更好的是,我们的编码器已经超过下一代在RGB/MISC 和 MAU420 的RGB/MSLC CLC 中的传统代码。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员