Non-parametric, additive models are able to capture complex data dependencies in a flexible, yet interpretable way. However, choosing the format of the additive components often requires non-trivial data exploration. Here, as an alternative, we propose PrAda-net, a one-hidden-layer neural network, trained with proximal gradient descent and adaptive lasso. PrAda-net automatically adjusts the size and architecture of the neural network to reflect the complexity and structure of the data. The compact network obtained by PrAda-net can be translated to additive model components, making it suitable for non-parametric statistical modelling with automatic model selection. We demonstrate PrAda-net on simulated data, where wecompare the test error performance, variable importance and variable subset identification properties of PrAda-net to other lasso-based regularization approaches for neural networks. We also apply PrAda-net to the massive U.K. black smoke data set, to demonstrate how PrAda-net can be used to model complex and heterogeneous data with spatial and temporal components. In contrast to classical, statistical non-parametric approaches, PrAda-net requires no preliminary modeling to select the functional forms of the additive components, yet still results in an interpretable model representation.
翻译:非参数性、添加型模型能够以灵活、但可解释的方式捕捉到复杂的数据依赖性。然而,选择添加型组件的格式往往需要非三维数据勘探。在这里,我们提议采用单层神经网络PrAda-net,这是一个单层神经网络,受过精度梯度下降和适应性拉索的培训。PrAda-net自动调整神经网络的规模和结构,以反映数据的复杂性和结构。PrAda-net获得的紧凑网络可以转换为添加型组件,使之适合采用自动模型选择的非参数统计模型。我们用模拟数据展示PrAda-net,我们在此将测试错误性能、不同重要性和可变子识别特性与其他基于lasso的神经网络规范化方法结合起来。我们还对大型U.K.黑烟数据集应用PrAda-net,以展示如何使用带有空间和时间组件的复杂和混集数据模型。与典型、统计性能性能解释模型相比,PrA-net仍需要选择模型的模型、非功能性解释方法。