Recently, to improve the unsupervised image retrieval performance, plenty of unsupervised hashing methods have been proposed by designing a semantic similarity matrix, which is based on the similarities between image features extracted by a pre-trained CNN model. However, most of these methods tend to ignore high-level abstract semantic concepts contained in images. Intuitively, concepts play an important role in calculating the similarity among images. In real-world scenarios, each image is associated with some concepts, and the similarity between two images will be larger if they share more identical concepts. Inspired by the above intuition, in this work, we propose a novel Unsupervised Hashing with Semantic Concept Mining, called UHSCM, which leverages a VLP model to construct a high-quality similarity matrix. Specifically, a set of randomly chosen concepts is first collected. Then, by employing a vision-language pretraining (VLP) model with the prompt engineering which has shown strong power in visual representation learning, the set of concepts is denoised according to the training images. Next, the proposed method UHSCM applies the VLP model with prompting again to mine the concept distribution of each image and construct a high-quality semantic similarity matrix based on the mined concept distributions. Finally, with the semantic similarity matrix as guiding information, a novel hashing loss with a modified contrastive loss based regularization item is proposed to optimize the hashing network. Extensive experiments on three benchmark datasets show that the proposed method outperforms the state-of-the-art baselines in the image retrieval task.


翻译:最近,为了改进未经监督的图像检索性能,通过设计一个语义相似性矩阵,提出了大量未经监督的散列方法,该矩阵基于通过受过训练的CNN模型提取的图像特征之间的相似性。然而,大多数这些方法倾向于忽略图像中包含的高层次抽象语义概念。直觉中,概念在计算图像相似性方面起着重要作用。在现实世界的情景中,每个图像都与某些概念相关联,如果两个图像共享更相似的概念,它们之间的相似性就会更大。在以上直觉的启发下,我们提出了一个新的与Semanitic概念采矿公司(UHashing)的超超常性哈斯兴相似性矩阵。然而,我们建议采用VLP模型,将一组随机选择的概念在计算图像相近性图像的预选模型(VLP)模型与快速工程模型(在视觉演示中显示最强的精锐性精锐性精锐性),一套概念根据培训图像被淡化。接下来,拟议的方法在SEMM 基线 Mister Revoriz 中将高质量的图像模型模型(SLM) 显示一个类似的图像流化模型,最终将一组数据流 显示一个基于高质量的模型。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2021年9月22日
Arxiv
31+阅读 · 2020年9月21日
A survey on deep hashing for image retrieval
Arxiv
14+阅读 · 2020年6月10日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员