We construct a lower bound of the tensor rank for a new class of tensors, which we call persistent tensors. We present three specific families of persistent tensors, of which the lower bound is tight. We show that there is a chain of degenerations between these three families of minimal-rank persistent tensors that can be used to study the entanglement transformation between them. In addition, we show that these three families of persistent tensors are indeed different generalizations of multiqubit $\rm{W}$ states within multiqudit systems and are geometrically in the orbit closure of multiqudit $\rm{GHZ}$ states. Consequently, we show that one can obtain every one of the generalizations of $\rm{W}$ state from a multiqudit $\rm{GHZ}$ state via asymptotic Stochastic Local Operations and Classical Communication (SLOCC) with rate one. Finally, we extend the obtained lower bound of the tensor rank to direct sums with persistent summands and to even more general combinations of tensors, which we call block pyramidal tensors. As a result, we show that the tensor rank is multiplicative under the Kronecker and tensor products of minimal-rank persistent tensors with the $\rm{GHZ}$ tensor.
翻译:我们为一个新的高压类别构建了一个更低的电压等级, 我们称之为“ 恒定的压强” 。 我们展示了三个持续高压类别中的三个特定家族, 其中三个家族是持续高压的, 下限是紧凑的。 我们展示了这三家族中, 三个最小的持久性高压类别之间有一个分解链, 可以用来研究它们之间的纠缠变化。 此外, 我们展示了这三家族中, 持久性高压类别确实不同, 多方位系统中的多维位 $\ rm{W} 国家, 并且几何分解地处于多QQUD的轨道关闭状态中。 因此, 我们显示, 每三个家庭中, $\ rm{W} 国家都有一个分解链, 可以通过单调的当地操作和经典通信( SLOCC ) 来研究它们之间的纠缠变化。 最后, 我们把获得的低压级数级数级数级数级数级数级数级数, 直达数级数级数, 甚至数级数级数级数级数等数。 。 我们把数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数。