We construct a lower bound of the tensor rank for a new class of tensors, which we call persistent tensors. We present three specific families of persistent tensors, of which the lower bound is tight. We show that there is a chain of degenerations between these three families of minimal-rank persistent tensors that can be used to study the entanglement transformation between them. In addition, we show that these three families of persistent tensors are indeed different generalizations of multiqubit $\rm{W}$ states within multiqudit systems and are geometrically in the orbit closure of multiqudit $\rm{GHZ}$ states. Consequently, we show that one can obtain every one of the generalizations of $\rm{W}$ state from a multiqudit $\rm{GHZ}$ state via asymptotic Stochastic Local Operations and Classical Communication (SLOCC) with rate one. Finally, we extend the obtained lower bound of the tensor rank to direct sums with persistent summands and to even more general combinations of tensors, which we call block pyramidal tensors. As a result, we show that the tensor rank is multiplicative under the Kronecker and tensor products of minimal-rank persistent tensors with the $\rm{GHZ}$ tensor.


翻译:我们为一个新的高压类别构建了一个更低的电压等级, 我们称之为“ 恒定的压强” 。 我们展示了三个持续高压类别中的三个特定家族, 其中三个家族是持续高压的, 下限是紧凑的。 我们展示了这三家族中, 三个最小的持久性高压类别之间有一个分解链, 可以用来研究它们之间的纠缠变化。 此外, 我们展示了这三家族中, 持久性高压类别确实不同, 多方位系统中的多维位 $\ rm{W} 国家, 并且几何分解地处于多QQUD的轨道关闭状态中。 因此, 我们显示, 每三个家庭中, $\ rm{W} 国家都有一个分解链, 可以通过单调的当地操作和经典通信( SLOCC ) 来研究它们之间的纠缠变化。 最后, 我们把获得的低压级数级数级数级数级数级数级数级数, 直达数级数级数, 甚至数级数级数级数级数等数。 。 我们把数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数级数。

0
下载
关闭预览

相关内容

【ACML2020】张量网络机器学习:最近的进展和前沿,109页ppt
专知会员服务
55+阅读 · 2020年12月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月23日
Arxiv
0+阅读 · 2022年12月22日
Arxiv
0+阅读 · 2022年12月21日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员