Previous computation models either have equivalent abilities in representing all computations but fail to provide primitive operators for programming complex algorithms or lack generalized expression ability to represent newly-added computations. This article presents a unified computation model with generalized expression ability and a concise set of primitive operators for programming high-level algorithms. We propose a unified data abstraction -- Tensor of List, and offer a unified computation model based on Tensor of List, which we call the ToL model (in short, ToL). ToL introduces five atomic computations that can represent any elementary computation by finite composition, ensured with strict formal proof. Based on ToL, we design a pure-functional language -- ToLang. ToLang provides a concise set of primitive operators that can be used to program complex big data and AI algorithms. Our evaluations show ToL has generalized expression ability and a built-in performance indicator, born with a strictly defined computation metric -- elementary operation count (EOPs), consistent with FLOPs within a small error range.
翻译:先前的计算模型要么具有代表所有计算方法的同等能力,但未能为编程复杂算法提供原始操作员,要么没有为编程复杂算法提供原始操作员,或者缺乏代表新加计算法的通用表达能力。本文章提供了一个统一的计算模型,具有通用表达能力和一套用于编程高级算法的简洁原始操作员。我们提出了一个统一的数据抽象化 -- -- 列表的Tensor,并提供了一个以列表的Tensor为基础的统一计算模型(简称ToL)。 ToL 引入了五种原子计算,这些原子计算可以代表以有限构成进行的任何基本计算,并得到严格的正式证明。根据 ToL,我们设计了一种纯功能语言 -- -- ToLang。 ToLang 提供了一套简明的原始操作员,可用于编程复杂的大数据和AI算法。我们的评估显示,TOL具有通用的表达能力和内在性能指标,该指标与严格定义的计算参数 -- -- 基本操作计数(EOPs)一致,在小错误范围内与FLOPs。