Where dual-numbers forward-mode automatic differentiation (AD) pairs each scalar value with its tangent value, dual-numbers /reverse-mode/ AD attempts to achieve reverse AD using a similarly simple idea: by pairing each scalar value with a backpropagator function. Its correctness and efficiency on higher-order input languages have been analysed by Brunel, Mazza and Pagani, but this analysis used a custom operational semantics for which it is unclear whether it can be implemented efficiently. We take inspiration from their use of /linear factoring/ to optimise dual-numbers reverse-mode AD to an algorithm that has the correct complexity and enjoys an efficient implementation in a standard functional language with support for mutable arrays, such as Haskell. Aside from the linear factoring ingredient, our optimisation steps consist of well-known ideas from the functional programming community. We demonstrate the practical use of our technique by providing a performant implementation that differentiates most of Haskell98.


翻译:当双数前式自动差异化(AD)配对时,如果双数/反反向模式/AD试图使用一个类似的简单想法实现反向反向反向反向应用:将每个斜度值与后向推进函数配对。Brunel、Mazza和Pagani分析了高阶输入语言的正确性和效率,但这一分析使用了一种定制操作语义,无法有效地加以执行。我们从它们使用/线性因数/优化双数反向模式AD到一种算法的灵感,这种算法具有正确的复杂性,并以标准功能语言有效地实施,支持可变式阵列,例如Haskell。除了线性因数要素外,我们的选择步骤还包括功能性编程社区中众所周知的想法。我们通过提供一种区分大多数Haskell98的性执行方法来展示我们技术的实际用途。

0
下载
关闭预览

相关内容

【2022新书】深度学习R语言实战,第二版,568页pdf
专知会员服务
85+阅读 · 2022年10月23日
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
Python计算导论,560页pdf,Introduction to Computing Using Python
专知会员服务
72+阅读 · 2020年5月5日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年2月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员