项目名称: 有限环上自对偶码的构造研究
项目编号: No.11626144
项目类型: 专项基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 高健
作者单位: 山东理工大学
项目金额: 3万元
中文摘要: 有限环上的纠错码理论是一个热点研究问题。四元环Z4与F2+uF2上的自对偶码是重要的线性码类,与很多数学领域紧密相关如格理论、不变量理论、组合设计等。本项目将研究四元环Z4与F2+uF2上码长较大且性能良好的自对偶码的构造问题。首先,研究四元环Z4与F2+uF2的扩环上二次剩余码及其扩充码的代数结构,从而构造出Z4与F2+uF2的扩环上的自对偶码;其次,将Z4与F2+uF2上构造自对偶码的组合方法推广到Z4与F2+uF2的扩环上并由此构造Z4与F2+uF2的扩环上的自对偶码;最后,给出Z4与F2+uF2的扩环到Z4与F2+uF2上保距、保持自对偶性且使映射后的Gray象具有较大极小距离的Gray映射,利用Z4与F2+uF2的扩环上的自对偶码和Gray映射间接的构造Z4与F2+uF2上码长较大且性能良好的自对偶码。本项目将为有限环上纠错码理论的发展及其在数学领域中的应用做出一定的贡献。
中文关键词: 环上的编码;Gray映射;自对偶码;量子纠错码;新的码
英文摘要: Coding theory over finite rings is a hot research topic in the error-correcting theory. Self-dual codes over quaternary rings Z4 and F2+uF2 form an important class of linear codes. They are closely connected with other mathematical problems such as lattic
英文关键词: Coding theory over rings;Gray maps;Self-dual codes;Quantum error-correcting codes;New codes