Training models dedicated to semantic segmentation requires a large amount of pixel-wise annotated data. Due to their costly nature, these annotations might not be available for the task at hand. To alleviate this problem, unsupervised domain adaptation approaches aim at aligning the feature distributions between the labeled source and the unlabeled target data. While these strategies lead to noticeable improvements, their effectiveness remains limited. To guide the domain adaptation task more efficiently, previous works attempted to include human interactions in this process under the form of sparse single-pixel annotations in the target data. In this work, we propose a new domain adaptation framework for semantic segmentation with annotated points via active selection. First, we conduct an unsupervised domain adaptation of the model; from this adaptation, we use an entropy-based uncertainty measurement for target points selection. Finally, to minimize the domain gap, we propose a domain adaptation framework utilizing these target points annotated by human annotators. Experimental results on benchmark datasets show the effectiveness of our methods against existing unsupervised domain adaptation approaches. The propose pipeline is generic and can be included as an extra module to existing domain adaptation strategies.
翻译:用于语义分解的培训模式需要大量像素分解的附加说明数据。 由于这些说明具有昂贵的性质, 可能无法为手头的任务提供这些说明。 为了缓解这一问题, 无监督的域适应办法旨在将标记源与未标记目标数据之间的特征分布统一起来。 虽然这些战略可以带来显著的改进,但其有效性仍然有限。 为了更有效地指导域适应任务, 以往的工作试图将人类互动纳入此进程, 其形式为目标数据中稀少的单像素分解。 在这项工作中, 我们提议了一个新的域适应框架, 通过主动选择附加说明点进行语义分解。 首先, 我们对该模型进行不受监督的域调整; 从这一调整中, 我们使用基于英特基不确定性的测量方法来选择目标点。 最后, 为了尽可能缩小区域差距, 我们提议了一个域适应框架, 利用这些指标点由人类说明。 基准数据集的实验结果显示我们的方法相对于现有的未经监督的域域适应方法的有效性。 拟议的管道是通用的, 可以作为现有域适应战略的外模块列入。