We propose an efficient method to learn both unstructured and structured sparse neural networks during training, using a novel generalization of the sparse envelope function (SEF) used as a regularizer, termed {\itshape{group sparse envelope function}} (GSEF). The GSEF acts as a neuron group selector, which we leverage to induce structured pruning. Our method receives a hardware-friendly structured sparsity of a deep neural network (DNN) to efficiently accelerate the DNN's evaluation. This method is flexible in the sense that it allows any hardware to dictate the definition of a group, such as a filter, channel, filter shape, layer depth, a single parameter (unstructured), etc. By the nature of the GSEF, the proposed method is the first to make possible a pre-define sparsity level that is being achieved at the training convergence, while maintaining negligible network accuracy degradation. We propose an efficient method to calculate the exact value of the GSEF along with its proximal operator, in a worst-case complexity of $O(n)$, where $n$ is the total number of groups variables. In addition, we propose a proximal-gradient-based optimization method to train the model, that is, the non-convex minimization of the sum of the neural network loss and the GSEF. Finally, we conduct an experiment and illustrate the efficiency of our proposed technique in terms of the completion ratio, accuracy, and inference latency.
翻译:我们提出一种有效的方法,在培训期间学习结构化和结构化的稀散神经网络,在培训期间学习结构化和结构化的稀薄神经网络,使用一种新颖的方法,对作为常规化器的稀薄信封功能(SEF)加以概括,称为 litsshape{group spresh unfef 函数\\\ (GSEF) (GSEF) 。 GSEF是一个神经组选择器,我们利用这种方法进行结构化的调整。 我们的方法获得了一个硬件友好的深层神经网络结构宽广,以高效地加速DNNNE的评价工作。 这种方法是灵活的,因为它允许任何硬件来决定一个群体的定义,例如过滤器、频道、过滤器形状、层深度、单一参数(不结构化的)等。 根据GSEF的性质, 拟议的方法首先可以使在培训趋同过程中实现的防偏差性松动性神经网络水平水平,同时保持微不足道的网络精确性退化。 我们提出了一个有效的方法来计算GSEF的准确价值及其精度, 最差的复杂程度是美元, 其中以美元为我们最差的模型和最差的轨道的精度, 和最差的精度是最差的模型的精度。