We study integration and $L^2$-approximation in the worst-case setting for deterministic linear algorithms based on function evaluations. The underlying function space is a reproducing kernel Hilbert space with a Gaussian kernel of tensor product form. In the infinite-variate case, for both computational problems, we establish matching upper and lower bounds for the polynomial convergence rate of the $n$-th minimal error. In the multivariate case, we improve several tractability results for the integration problem. For the proofs, we establish the following transference result together with an explicit construction: Each of the computational problems on a space with a Gaussian kernel is equivalent on the level of algorithms to the same problem on a Hermite space with suitable parameters.
翻译:暂无翻译