Image-to-image translation (i2i) networks suffer from entanglement effects in presence of physics-related phenomena in target domain (such as occlusions, fog, etc), lowering altogether the translation quality, controllability and variability. In this paper, we build upon collection of simple physics models and present a comprehensive method for disentangling visual traits in target images, guiding the process with a physical model that renders some of the target traits, and learning the remaining ones. Because it allows explicit and interpretable outputs, our physical models (optimally regressed on target) allows generating unseen scenarios in a controllable manner. We also extend our framework, showing versatility to neural-guided disentanglement. The results show our disentanglement strategies dramatically increase performances qualitatively and quantitatively in several challenging scenarios for image translation.
翻译:图像到图像翻译 (i2i) 网络在目标领域( 诸如隔离、 雾等) 物理现象存在的情况下, 受到与物理有关的现象的缠绕效应, 降低了翻译质量、 可控性和可变性。 在本文中, 我们以简单物理模型的收集为基础, 提出了在目标图像中分离视觉特征的综合性方法, 以物理模型引导进程, 使目标特征中的某些特征具有一定的物理模型, 并学习其余的物理模型。 由于它允许清晰和可解释的输出, 我们的物理模型( 极接近于目标) 允许以可控的方式生成看不见的场景。 我们还扩展了我们的框架, 展示了多功能, 以神经导导导的分解。 结果表明, 我们的分解战略在数种具有挑战性的图像翻译情景中, 从质量和数量上大大提高了性能 。