Medical ultrasound (US) is one of the most widely used imaging modalities in clinical practice. However, its use presents unique challenges such as variable imaging quality. Deep learning (DL) can be used as an advanced medical US image analysis tool, while the performance of the DL model is greatly limited by the scarcity of big datasets. Here, we develop semi-supervised classification enhancement (SSCE) structures by combining convolutional neural network (CNN) and generative adversarial network (GAN) to address the data shortage. A breast cancer dataset with 780 images is used as our base dataset. The results show that our SSCE structures obtain an accuracy of up to 97.9%, showing a maximum 21.6% improvement compared with utilizing CNN models alone and outperforming the previous methods using the same dataset by up to 23.9%. We believe our proposed state-of-the-art method can be regarded as a potential auxiliary tool for the diagnoses of medical US images.
翻译:医学超声波(US)是临床实践中最广泛使用的成像模式之一。 但是,它的使用带来了独特的挑战,如可变成像质量。 深度学习(DL)可以用作先进的美国医学图像分析工具,而DL模型的性能却因大数据集稀缺而大受限制。 在这里,我们开发半监督的分类强化结构,将神经神经网络(CNN)和基因对抗网络(GAN)相结合,以解决数据短缺问题。我们的基础数据集使用了780个图象的乳腺癌数据集。结果显示,我们的SSCE结构获得了高达97.9%的精确度,显示与光使用CNN模型相比,最大改进了21.6%,并比使用23.9%的同一数据集比以往的方法表现得快。 我们相信,我们提出的最新方法可以被视为诊断美国医学图像的潜在辅助工具。