In this work, we introduce Vid2Seq, a multi-modal single-stage dense event captioning model pretrained on narrated videos which are readily-available at scale. The Vid2Seq architecture augments a language model with special time tokens, allowing it to seamlessly predict event boundaries and textual descriptions in the same output sequence. Such a unified model requires large-scale training data, which is not available in current annotated datasets. We show that it is possible to leverage unlabeled narrated videos for dense video captioning, by reformulating sentence boundaries of transcribed speech as pseudo event boundaries, and using the transcribed speech sentences as pseudo event captions. The resulting Vid2Seq model pretrained on the YT-Temporal-1B dataset improves the state of the art on a variety of dense video captioning benchmarks including YouCook2, ViTT and ActivityNet Captions. Vid2Seq also generalizes well to the video paragraph captioning task and the standard task of video clip captioning. Our code and models will be publicly released at https://antoyang.github.io/vid2seq.html.
翻译:在这项工作中,我们引入了Vid2Seq, 这是一种多式单级密集事件说明模型, 这是一种多式单级密集事件说明模型, 预先在刻录的视频上培训, 可以大规模获得。 Vid2Seq 结构增加了一种语言模型, 配有特殊的时间符号, 使得它能够无缝地预测事件边界和在同一输出序列中文本描述。 这种统一模型需要大型培训数据, 而当前附加说明的数据集中无法提供这些数据 。 我们显示, 有可能利用未贴标签的笔录视频说明来进行密集的视频说明, 将转录的语音的句子边界重新设定为假事件界限, 并使用转录的语音句子作为假事件说明。 由此产生的 Vid2Seqeq 模型在YT- Terposoral-1B 数据集上预先培训, 改善了各种密集视频说明基准的艺术状态, 包括YouCook2、 Vitt和活动网卡 。 我们的Vid2Seqequ 也能够将视频段落说明任务和视频剪贴插画的标准任务概括化。 我们的代码和模型将在 https://antoyang2.html2.giubview.</s>