We introduce an $hp$-version discontinuous Galerkin finite element method (DGFEM) for the linear Boltzmann transport problem. A key feature of this new method is that, while offering arbitrary order convergence rates, it may be implemented in an almost identical form to standard multigroup discrete ordinates methods, meaning that solutions can be computed efficiently with high accuracy and in parallel within existing software. This method provides a unified discretisation of the space, angle, and energy domains of the underlying integro-differential equation and naturally incorporates both local mesh and local polynomial degree variation within each of these computational domains. Moreover, general polytopic elements can be handled by the method, enabling efficient discretisations of problems posed on complicated spatial geometries. We study the stability and $hp$-version a priori error analysis of the proposed method, by deriving suitable $hp$-approximation estimates together with a novel inf-sup bound. Numerical experiments highlighting the performance of the method for both polyenergetic and monoenergetic problems are presented.
翻译:我们引入了一种$hp$-版本的间断Galerkin有限元方法(DGFEM)用于线性Boltzmann传输问题。这种新方法的一个关键特点是,在提供任意阶收敛率的同时,它几乎可以用与标准多群离散方向方法相同的形式实现,这意味着解可以在现有软件中高精度和并行计算。该方法提供了基于底层积分微分方程的空间、角度和能量域的统一离散化,并自然地在每个计算域中包含本地网格和本地多项式度数的变化。此外,该方法可以处理一般的多面体元素,从而实现了在复杂空间几何体上的问题的高效离散化。我们通过推导合适的$hp$-近似估计与新型inf-sup边界来研究所提出方法的稳定性和$hp$-版本先验误差分析。我们还提供了数值实验,以展示该方法在多能谱问题和单能谱问题中的性能。