This paper is devoted to the analysis of a numerical scheme based on the Finite Element Method for approximating the solution of Koiter's model for a linearly elastic elliptic membrane shell subjected to remaining confined in a prescribed half-space. First, we show that the solution of the obstacle problem under consideration is uniquely determined and satisfies a set of variational inequalities which are governed by a fourth order elliptic operator, and which are posed over a non-empty, closed, and convex subset of a suitable space. Second, we show that the solution of the obstacle problem under consideration can be approximated by means of the penalty method. Third, we show that the solution of the corresponding penalised problem is more regular up to the boundary. Fourth, we write down the mixed variational formulation corresponding to the penalised problem under consideration, and we show that the solution of the mixed variational formulation is more regular up to the boundary as well. In view of this result concerning the augmentation of the regularity of the solution of the mixed penalised problem, we are able to approximate the solution of the one such problem by means of a Finite Element scheme. Finally, we present numerical experiments corroborating the validity of the mathematical results we obtained.


翻译:本論文研究了基於有限元方法的數值方案,用於逼近Koiter模型的解,該模型用於線彈性橢圓膜殼,該膜殼受限於一個预定的半空间内。首先,我們證明了所考慮的障礙问题的解是唯一的,並滿足一組變分不等式,這些不等式由一個四階橢圓算子控制,並且被提出在一個非空,閉合和凸有效空間上。其次,我們展示了所考慮的障礙問題的解可以通過罰款法逼近。第三,我們展示了所考慮的相應罰款問題的解更加规则化直到边界。第四,我們撰寫了對應於所考慮的罰款問題的混合变分公式,並且我們展示了所混合变分公式的解也更加规则化直到边界。鑒於解释所考虑的混合罚款问题的规则性增加结果,我们能够通过有限元方案逼近该问题的解。最后,我们提出了数值实验,以验证我们所获得的数学结果的有效性。

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
78+阅读 · 2022年4月3日
因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月30日
VIP会员
相关VIP内容
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员