Recent advances in deep neural networks (DNNs) have significantly improved various audio processing applications, including speech enhancement, synthesis, and hearing aid algorithms. DNN-based closed-loop systems have gained popularity in these applications due to their robust performance and ability to adapt to diverse conditions. Despite their effectiveness, current DNN-based closed-loop systems often suffer from sound quality degradation caused by artifacts introduced by suboptimal sampling methods. To address this challenge, we introduce dCoNNear, a novel DNN architecture designed for seamless integration into closed-loop frameworks. This architecture specifically aims to prevent the generation of spurious artifacts. We demonstrate the effectiveness of dCoNNear through a proof-of-principle example within a closed-loop framework that employs biophysically realistic models of auditory processing for both normal and hearing-impaired profiles to design personalized hearing aid algorithms. Our results show that dCoNNear not only accurately simulates all processing stages of existing non-DNN biophysical models but also eliminates audible artifacts, thereby enhancing the sound quality of the resulting hearing aid algorithms. This study presents a novel, artifact-free closed-loop framework that improves the sound quality of audio processing systems, offering a promising solution for high-fidelity applications in audio and hearing technologies.
翻译:暂无翻译