Low-rank and nonsmooth matrix optimization problems capture many fundamental tasks in statistics and machine learning. While significant progress has been made in recent years in developing efficient methods for \textit{smooth} low-rank optimization problems that avoid maintaining high-rank matrices and computing expensive high-rank SVDs, advances for nonsmooth problems have been slow paced. In this paper we consider standard convex relaxations for such problems. Mainly, we prove that under a natural \textit{generalized strict complementarity} condition and under the relatively mild assumption that the nonsmooth objective can be written as a maximum of smooth functions, the \textit{extragradient method}, when initialized with a "warm-start" point, converges to an optimal solution with rate $O(1/t)$ while requiring only two \textit{low-rank} SVDs per iteration. We give a precise trade-off between the rank of the SVDs required and the radius of the ball in which we need to initialize the method. We support our theoretical results with empirical experiments on several nonsmooth low-rank matrix recovery tasks, demonstrating that using simple initializations, the extragradient method produces exactly the same iterates when full-rank SVDs are replaced with SVDs of rank that matches the rank of the (low-rank) ground-truth matrix to be recovered.


翻译:虽然近年来在为低端优化问题制定高效方法以避免维持高端矩阵和高高的高级SVD而避免维持高端矩阵和计算昂贵的高高级SVD的低端优化问题方面取得了显著的进展,但非光度问题的进展却进展缓慢。在本文中,我们只考虑对此类问题的标准松脱。主要是,我们证明,在自然的 & textit{普遍化的严格互补}条件和相对温缓的假设下,在非毛目标可以写成为最顺利功能的最大值的假设下,在近些年在制定高效方法以避免保持高端矩阵和计算高高端SVD的低端低端优化方法方面取得了显著进展。虽然近年来在为避免维持高端矩阵和高端的低端SVD标准放松了这些问题的标准化标准。 当以“温启动点”的起始点初始化结果时,我们支持我们的理论结果,在用美元(1/美元)的汇率中,而只需要两个标准方[lowk}SVDDs 放松的放松等级的等级和我们需要开始方法的中间点之间有一个精确的利差。 我们支持我们的理论-D-D-D-在几个不完全的恢复时,在几个非方法上展示的恢复时,用一些不折后,用一些不折的平的平的平的平的平的平的平的平的平的平的平后,用一些的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平方法是相同的方法是相同的方法是相同的方法是相同的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的平的

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
22+阅读 · 2021年12月19日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员