Following initial work by Robbins, we rigorously present an extended theory of nonnegative supermartingales, requiring neither integrability nor finiteness. In particular, we derive a key maximal inequality foreshadowed by Robbins, which we call the extended Ville's inequality, that strengthens the classical Ville's inequality (for integrable nonnegative supermartingales), and also applies to our nonintegrable setting. We derive an extension of the method of mixtures, which applies to $\sigma$-finite mixtures of our extended nonnegative supermartingales. We present some implications of our theory for sequential statistics, such as the use of improper mixtures (priors) in deriving nonparametric confidence sequences and (extended) e-processes.
翻译:沿袭 Robbins 的初步工作,我们严格阐述了对非负超马丁格尔进行扩展的理论,既不需要可积性,也不需要有限性。特别是,我们导出了一种关键的极大不等式,称为扩展Ville不等式,它加强了经典的Ville不等式(对于可积的非负超马丁格尔),同时也适用于我们的非可积情况。我们推导了一种混合方法的扩展,它适用于我们扩展的非负超马丁格尔的$\sigma$-有限混合。我们提出了我们的理论对于顺序统计的一些影响,例如在推导非参数信赖区间和(扩展的)e-过程中使用不当混合(先验)。