Let $G$ be a connected $n$-vertex graph in a proper minor-closed class $\mathcal G$. We prove that the extension complexity of the spanning tree polytope of $G$ is $O(n^{3/2})$. This improves on the $O(n^2)$ bounds following from the work of Wong (1980) and Martin (1991). It also extends a result of Fiorini, Huynh, Joret, and Pashkovich (2017), who obtained a $O(n^{3/2})$ bound for graphs embedded in a fixed surface. Our proof works more generally for all graph classes admitting strongly sublinear balanced separators: We prove that for every constant $\beta$ with $0<\beta<1$, if $\mathcal G$ is a graph class closed under induced subgraphs such that all $n$-vertex graphs in $\mathcal G$ have balanced separators of size $O(n^\beta)$, then the extension complexity of the spanning tree polytope of every connected $n$-vertex graph in $\mathcal{G}$ is $O(n^{1+\beta})$. We in fact give two proofs of this result, one is a direct construction of the extended formulation, the other is via communication protocols. Using the latter approach we also give a short proof of the $O(n)$ bound for planar graphs due to Williams (2002).
翻译:$G$ 在适当的小封闭类中是一个连结的 $ $ 美元 的顶点图 $ g$ 。 我们证明, 横跨树形多面体的 $G$ 的扩展复杂性是 $O (n ⁇ 3/2 美元) 美元 。 这在Wong(1980) 和 Martin(1991) 的工作之后, 美元(n ⁇ 2 美元) 的界限上有所改进。 它还延伸了Fiorini、 Huynh、 Joret 和 Pashkovich (2017) 的结果, 他获得了 $(n ⁇ 3/2 美元) 的固定表面嵌入的图形 。 我们所有图表类的扩展复杂性一般都承认亚线性平衡的分隔器 : 我们证明, 对于每个恒定的 $@beta < 1 美元, 如果$\\ balgal 在引导的子图下关闭的图形类别, $- 美元(n_ 3/2美元) 的垂直图的延伸复杂性也是 美元 。