A class of models that have been widely used are the exponential random graph (ERG) models, which form a comprehensive family of models that include independent and dyadic edge models, Markov random graphs, and many other graph distributions, in addition to allow the inclusion of covariates that can lead to a better fit of the model. Another increasingly popular class of models in statistical network analysis are stochastic block models (SBMs). They can be used for the purpose of grouping nodes into communities or discovering and analyzing a latent structure of a network. The stochastic block model is a generative model for random graphs that tends to produce graphs containing subsets of nodes characterized by being connected to each other, called communities. Many researchers from various areas have been using computational tools to adjust these models without, however, analyzing their suitability for the data of the networks they are studying. The complexity involved in the estimation process and in the goodness-of-fit verification methodologies for these models can be factors that make the analysis of adequacy difficult and a possible discard of one model in favor of another. And it is clear that the results obtained through an inappropriate model can lead the researcher to very wrong conclusions about the phenomenon studied. The purpose of this work is to present a simple methodology, based on Hypothesis Tests, to verify if there is a model specification error for these two cases widely used in the literature to represent complex networks: the ERGM and the SBM. We believe that this tool can be very useful for those who want to use these models in a more careful way, verifying beforehand if the models are suitable for the data under study.


翻译:广泛使用的一组模型是指数随机图(ERG)模型,这些模型构成一个全面的模型组合,其中包括独立和双亚齐边缘模型、Markov随机图和许多其他图表分布,此外,还允许纳入可更好适应模型的共变模型。统计网络分析中日益受欢迎的另一类模型是随机区块模型(SBMs)。这些模型可用于将节点分组到社区或发现和分析网络的潜在结构。随机图块模型是一个随机图的基因化模型,这些模型往往产生含有以相互连接为特点的节点子组的图表集,这些社区被称作社区。来自不同地区的许多研究人员一直在使用计算工具来调整这些模型,而没有分析这些模型是否适合他们正在研究的网络数据。这些模型的复杂程度以及对这些模型的完善性核查方法可能是一些有用的因素,如果对是否充足性的分析更加困难,并且有可能对一种模型进行仔细研究,则有利于另一种模型。而且很显然,通过一种非常复杂的模型获得的结果,如果通过一种不适当的模型来进行核查,那么在一种基于模型的模型的研究中,这些模型中,这些是用于一种非常错误的模型研究的模型中的一种方法, 一种非常错误的模型研究。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Antipatterns in Software Classification Taxonomies
Arxiv
0+阅读 · 2022年4月19日
Arxiv
54+阅读 · 2022年1月1日
A Survey on Data Augmentation for Text Classification
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关VIP内容
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员