How can we approximate sparse graphs and sequences of sparse graphs (with unbounded average degree)? We consider convergence in the first $k$ moments of the graph spectrum (equivalent to the numbers of closed $k$-walks) appropriately normalized. We introduce a simple, easy to sample, random graph model that captures the limiting spectra of many sequences of interest, including the sequence of hypercube graphs. The Random Overlapping Communities (ROC) model is specified by a distribution on pairs $(s,q)$, $s \in \mathbb{Z}_+, q \in (0,1]$. A graph on $n$ vertices with average degree $d$ is generated by repeatedly picking pairs $(s,q)$ from the distribution, adding an Erd\H{o}s-R\'{e}nyi random graph of edge density $q$ on a subset of vertices chosen by including each vertex with probability $s/n$, and repeating this process so that the expected degree is $d$. Our proof of convergence to a ROC random graph is based on the Stieltjes moment condition. We also show that the model is an effective approximation for individual graphs. For almost all possible triangle-to-edge and four-cycle-to-edge ratios, there exists a pair $(s,q)$ such that the ROC model with this single community type produces graphs with both desired ratios, a property that cannot be achieved by stochastic block models of bounded description size. Moreover, ROC graphs exhibit an inverse relationship between degree and clustering coefficient, a characteristic of many real-world networks.


翻译:我们怎样可以粗略地估计稀少的图表和图表序列(没有约束的平均度)? 我们考虑在图形频谱最初的美元时段( 相当于关闭的美元行进数) 适当地正常化。 我们引入一个简单、 容易取样的随机图形模型, 捕捉许多利益序列的有限光谱, 包括超立方图的序列 。 随机重叠区( ROC) 模式由双对( s, q) 美元, $\ in\ mathbblock, q rbbc =( 0, 1美元)? 一个平均水平的以美元为单位的硬盘的硬盘组合。 我们反复从分布中选取双对美元( q) 美元, 随机图模型, 在选择的每组顶端密度为 $ qqq 。 我们的正方正数 的正数 与正数 的正数, 也无法在直方形 的正数 模式中 。

0
下载
关闭预览

相关内容

专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员