This paper considers synchronous discrete-time dynamical systems on graphs based on the threshold model. It is well known that after a finite number of rounds these systems either reach a fixed point or enter a 2-cycle. The problem of finding the fixed points for this type of dynamical system is in general both NP-hard and #P-complete. In this paper we give a surprisingly simple graph-theoretic characterization of fixed points and 2-cycles for the class of finite trees. Thus, the class of trees is the first nontrivial graph class for which a complete characterization of fixed points exists. This characterization enables us to provide bounds for the total number of fixed points and pure 2-cycles. It also leads to an output-sensitive algorithm to efficiently generate these states.
翻译:本文根据阈值模型审议了图表上同步离散时间动态系统。 众所周知, 经过一定数量的回合后, 这些系统要么到达固定点, 要么进入2个周期。 找到这类动态系统的固定点的问题一般是NP-hard 和 #P- 完成。 在本文中,我们对固定点和2周期的定点作了令人惊讶的简单图形理论定性, 以图解方式描述定点和定点树类的周期。 因此, 树类是第一个非三角的图表类别, 对固定点有完整的定性。 这种定性使我们能够为固定点和纯2周期的总数提供界限。 它还导致一种对产出敏感的算法, 以高效生成这些状态 。