We call a multigraph $(k,d)$-edge colourable if its edge set can be partitioned into $k$ subgraphs of maximum degree at most $d$ and denote as $\chi'_{d}(G)$ the minimum $k$ such that $G$ is $(k,d)$-edge colourable. We prove that for every integer $d$, every multigraph $G$ with maximum degree $\Delta$ is $(\lceil \frac{\Delta}{d} \rceil, d)$-edge colourable if $d$ is even and $(\lceil \frac{3\Delta - 1}{3d - 1} \rceil, d)$-edge colourable if $d$ is odd and these bounds are tight. We also prove that for every simple graph $G$, $\chi'_{d}(G) \in \{ \lceil \frac{\Delta}{d} \rceil, \lceil \frac{\Delta+1}{d} \rceil \}$ and characterize the values of $d$ and $\Delta$ for which it is NP-complete to compute $\chi'_d(G)$. These results generalize several classic results on the chromatic index of a graph by Shannon, Vizing, Holyer, Leven and Galil.
翻译:(k,d) 如果它的边缘值可以分割成以美元计最高等级的以美元为单位的以美元为单位的以美元为单位的子谱, 并用美元表示以美元为单位的以美元为单位的以美元为单位的以美元(k,d)为以美元为单位的以美元为以美元为单位的以色。 我们证明, 对于每整数美元来说,每个以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以值为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为以美元为单位的以美元为单位的以美元为单位的以值为单位的以值为单位的以值为单位的以值为单位的以值为单位的以值为单位的以值为单位的以值为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以美元为单位的以的以的以的以的以美元为单位的以值的以值的以的以的以美元为单位的以美元为单位的以值以值的以值以值为单位的以值为单位的以的以值以值以值为单位的以值为单位的以值以值为单位的以值为单位的以值为单位的以值以值以值为单位的以值为单位的以值为单位的以值为单位的以值为单位的以值为单位的以值为单位的以,以值为单位的以,以的以的以的以的以值为单位的以的以值为单位的以值为单位的以值为单位的以值为单位的以值为单位的