The label shift problem refers to the supervised learning setting where the train and test label distributions do not match. Existing work addressing label shift usually assumes access to an \emph{unlabelled} test sample. This sample may be used to estimate the test label distribution, and to then train a suitably re-weighted classifier. While approaches using this idea have proven effective, their scope is limited as it is not always feasible to access the target domain; further, they require repeated retraining if the model is to be deployed in \emph{multiple} test environments. Can one instead learn a \emph{single} classifier that is robust to arbitrary label shifts from a broad family? In this paper, we answer this question by proposing a model that minimises an objective based on distributionally robust optimisation (DRO). We then design and analyse a gradient descent-proximal mirror ascent algorithm tailored for large-scale problems to optimise the proposed objective. %, and establish its convergence. Finally, through experiments on CIFAR-100 and ImageNet, we show that our technique can significantly improve performance over a number of baselines in settings where label shift is present.
翻译:标签转换问题指火车和标签分配测试不匹配的监管学习设置。 处理标签转换的现有工作通常假定使用\ emph{ unlabled} 测试样本。 此样本可用于估算测试标签分布, 并随后培训一个适当的重新加权分类器。 虽然使用这一想法的方法已证明是有效的, 但其范围有限, 因为访问目标域并非总可行; 此外, 如果模型要应用到\ emph{ multiple} 测试环境, 还需要重复再培训。 一个人能学习到一个对大家族的任意标签变化具有活力的分类器吗? 在本文中, 我们提出一个模型, 最大限度地减少基于分布稳健的优化( DRO) 的目标 。 我们然后设计并分析一个梯度- proximal 镜, 作为适应大规模问题的精度算法, 以优化拟议目标。%, 并确立其趋同性。 最后, 通过在 CIRA- 100 和图像Net 的实验, 我们证明我们的技术可以大大改进在标签转换时的基线上的一些设置 。