Distributionally robust optimization (DRO) is a worst-case framework for stochastic optimization under uncertainty that has drawn fast-growing studies in recent years. When the underlying probability distribution is unknown and observed from data, DRO suggests to compute the worst-case distribution within a so-called uncertainty set that captures the involved statistical uncertainty. In particular, DRO with uncertainty set constructed as a statistical divergence neighborhood ball has been shown to provide a tool for constructing valid confidence intervals for nonparametric functionals, and bears a duality with the empirical likelihood (EL). In this paper, we show how adjusting the ball size of such type of DRO can reduce higher-order coverage errors similar to the Bartlett correction. Our correction, which applies to general von Mises differentiable functionals, is more general than the existing EL literature that only focuses on smooth function models or $M$-estimation. Moreover, we demonstrate a higher-order "self-normalizing" property of DRO regardless of the choice of divergence. Our approach builds on the development of a higher-order expansion of DRO, which is obtained through an asymptotic analysis on a fixed point equation arising from the Karush-Kuhn-Tucker conditions.


翻译:分布稳健优化(DRO)是不确定性下随机优化的最坏框架,近年来,这种框架引起了快速增长的研究。当潜在概率分布未知并从数据中观测到时,DRO建议在一个所谓的不确定性组内计算最坏的分布,该组包含相关的统计不确定性。特别是,以统计差异区际球构造的不确定性构成的DRO提供了一个工具,用于为非对称功能构建有效的信任间隔,并且具有与经验可能性(EL)的双重性。在本文中,我们展示了如何调整这类DRO的球体大小可以减少与Bartlett校正相类似的更高顺序覆盖错误。我们适用于一般 von Mises 可不同功能的校正比现有的EL文献更为笼统,后者只侧重于光滑动功能模型或$M-估计值。此外,我们展示了DRO的“自我标准化”属性更高顺序,而不管选择差异如何。我们的方法是借助对固定方程式条件下的Kar-K-rush 进行自制式分析获得的更高顺序扩展。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月10日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员