In this paper, we propose and analyse a numerical method to solve 2D Dirichlet time-harmonic elastic wave equations. The procedure is based on the decoupling of the elastic vector field into scalar Pressure ($P$-) and Shear ($S$-) waves via a suitable Helmholtz-Hodge decomposition. For the approximation of the two scalar potentials we apply a virtual element method associated with different mesh sizes and degrees of accuracy. We provide for the stability of the method and a convergence error estimate in the $L^2$-norm for the displacement field, in which the contributions to the error associated with the $P$- and $S$- waves are separated. In contrast to standard approaches that are directly applied to the vector formulation, this procedure allows for keeping track of the two different wave numbers, that depend on the $P$- and $S$- speeds of propagation and, therefore, for using a high-order method for the approximation of the wave associated with the higher wave number. Some numerical tests, validating the theoretical results and showing the good performance of the proposed approach, are presented.
翻译:本文提出并分析了一种解决二维Dirichlet时间谐波弹性波方程的数值方法。该方法基于通过适当的Helmholtz-Hodge分解将弹性向量场分解为标量压力($P$-)波和剪切($S$-)波。我们采用虚拟元素法来逼近这两个标量势,并考虑了不同的网格大小和准确度。我们提供了该方法的稳定性以及位移场的$L^2$-范数下的收敛误差估计,其中分离了与$P$-和$S$-波相关的误差贡献。与直接应用于矢量形式的标准方法不同,此过程允许跟踪取决于$P$-和$S$-传播速度的两个不同波数,并因此为利用高次方法逼近与更高波数相关的波提供了可能。文中给出了一些数值测试,验证了理论结果并展示了所提出方法的良好性能。