项目名称: 非零边界条件下扰动导数非线性薛定谔方程的解析和数值研究
项目编号: No.11426105
项目类型: 专项基金项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 李敏
作者单位: 华北电力大学
项目金额: 3万元
中文摘要: 导数非线性薛定谔(DNLS)方程因其可以模拟等离子体中的阿尔文孤子激发现象而被广泛关注。本项目致力于对非零边界条件下的扰动DNLS方程进行解析和数值研究,从而揭示暗孤子和反暗孤子在微扰下的动力学性质。首先,发展在非零边界条件下扰动DNLS方程的直接微扰理论,获得一阶近似孤子微扰解以及孤子参数的演化方程。其次,分析孤子振幅、速度、相位以及中心位置等物理量随时间和空间的变化情况,并借助对多孤子解的渐近行为分析将直接微扰理论应用于孤子相互作用研究。最后,基于时间分步谱方法和时间分步有限差分方法,对常数边界条件和周期性边界条件下暗孤子和反暗孤子的动力学机制进行数值研究,并为直接微扰理论的分析结果提供数值验证。本项目将有助于推动扰动DNLS方程在非零边界条件下的直接微扰理论和数值算法研究。
中文关键词: 扰动导数非线性薛定谔方程;非零边界条件;阿尔文孤子;直接微扰理论;孤子动力学
英文摘要: The derivative nonlinear Schr?dinger (DNLS) equation has attracted much attention due to the application in describing the Alfvésoliton excitation in plasmas. This project is devoted to the analytical and numerical study on the perturbed DNLS equation with nonvanishing boundary conditions, so as to reveal the dynamics of dark and antidark solitons under the effects of perturbations. First, we develop the direct perturbation theory for the perturbed DNLS equation with nonvanishing boundary conditions to obtain the first-order approximate perturbation solutions and the evolution equations of soliton parameters. Second, we analyze the variation of soliton amplitudes, velocities, phases and center positions with the time and space. Via the asymptotic analysis of the multi-soliton solutions, we also apply the direct perturbation theory to the study of soliton interactions. Last, based on the time-splitting spectral method and time-splitting finite difference method, we numerically investigate the dynamics of dark and antidark solitons both under constant and periodic boundary conditions, and verify the results obtained by the direct perturbation theory. This project will help to advance the development of the direct perturbation theory and numerical methods for the perturbed DNLS equation with nonvanishing boundary
英文关键词: Perturbed Derivative NLS Equation;Nonvanishing Boundary Conditions;AlfvéSolitons;Direct Perturbation Theory;Soliton Dynamics