Policy iteration techniques for multiple-server dispatching rely on the computation of value functions. In this context, we consider the continuous-space M/G/1-FCFS queue endowed with an arbitrarily-designed cost function for the waiting times of the incoming jobs. The associated relative value function is a solution of Poisson's equation for Markov chains, which in this work we solve in the Laplace transform domain by considering an ancillary, underlying stochastic process extended to (imaginary) negative backlog states. This construction enables us to issue closed-form relative value functions for polynomial and exponential cost functions and for piecewise compositions of the latter, in turn permitting the derivation of interval bounds for the relative value function in the form of power series or trigonometric sums. We review various cost approximation schemes and assess the convergence of the interval bounds these induce on the relative value function. Namely: Taylor expansions (divergent, except for a narrow class of entire functions with low orders of growth), and uniform approximation schemes (polynomials, trigonometric), which achieve optimal convergence rates over finite intervals. This study addresses all the steps to implementing dispatching policies for systems of parallel servers, from the specification of general cost functions towards the computation of interval bounds for the relative value functions and the exact implementation of the first-policy improvement step.


翻译:多服务器发送的政策传换技巧取决于对价值功能的计算。 在这方面, 我们考虑连续空间 M/ G/1- FFFS 队列, 为即将到来的工作的等待时间设置任意设计的成本功能。 相关的相对价值功能是Markov 链的Poisson方程式的解决方案, 我们在此工作中通过考虑一个辅助性、 基础性随机化进程, 扩展到( 想象性的) 负积压国家, 从而在Laplace 转换域。 这一构建使我们能够为多元和指数性成本函数以及后者的片断组合发布封闭式相对价值函数, 从而允许以权力序列或三角计量数的形式为相对价值函数设定间距线。 我们审查各种成本近似方案, 并评估这些间距的趋同点与相对价值函数的趋同。 即: Taylor 扩展( 差异性, 除了一个增长顺序较低的整个功能的狭小类别之外), 以及统一近似计划( polyomial, trgonology), 等式组合式组合, 从而在有限间隔内得出最佳趋同率的趋同率率率, 。 研究 执行整个服务器的相对精确的计算所有步骤, 的计算方法, 执行整个系统 执行总缩缩缩定的计算。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年10月11日
Arxiv
0+阅读 · 2021年10月11日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
腊月廿八 | 强化学习-TRPO和PPO背后的数学
AI研习社
17+阅读 · 2019年2月2日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员