Discrete normal distributions are defined as the distributions with prescribed means and covariance matrices which maximize entropy on the integer lattice support. The set of discrete normal distributions form an exponential family with cumulant function related to the Riemann theta function. In this paper, we present several formula for common statistical divergences between discrete normal distributions including the Kullback-Leibler divergence. In particular, we describe an efficient approximation technique for calculating the Kullback-Leibler divergence between discrete normal distributions via the projective $\gamma$-divergences.


翻译:分解的正常分布被定义为以规定的方式和共变矩阵进行分配,这些分布在整数 衬垫支持上能最大化的倍增。 离散的正常分布组形成指数式的组合, 与 Riemann theta 函数相关, 具有累积函数 。 在本文中, 我们为离散的正常分布之间的共同统计差异提出了几个公式, 包括 Kullback- Leiber 差异 。 特别是, 我们描述一种高效近似技术, 通过投影 $\gamma$- divegence 计算 离散的正常分布之间的 Kullback- Lebel 差异 。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2021年7月27日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员