We present a new enriched Galerkin (EG) scheme for the Stokes equations based on piecewise linear elements for the velocity unknowns and piecewise constant elements for the pressure. The proposed EG method augments the conforming piecewise linear space for velocity by adding an additional degree of freedom which corresponds to one discontinuous linear basis function per element. Thus, the total number of degrees of freedom is significantly reduced in comparison with standard conforming, non-conforming, and discontinuous Galerkin schemes for the Stokes equation. We show the well-posedness of the new EG approach and prove that the scheme converges optimally. For the solution of the resulting large-scale indefinite linear systems we propose robust block preconditioners, yielding scalable results independent of the discretization and physical parameters. Numerical results confirm the convergence rates of the discretization and also the robustness of the linear solvers for a variety of test problems.
翻译:我们为斯托克斯方程式提出了一个新的浓缩加热金(Galerkin)方案,其基础是速度未知的平方元素线性元素和压力的平面常数元素。提议的EG方法通过增加相当于每个元素一个不连续线性函数的额外自由度来增强速度的相匹配的平面线性空间。因此,与标准符合、不兼容和不连续的Galerkin方案相比,自由总度大大降低。我们展示了新的EG方法的精良性,并证明该方法最优化地融合了。为了解决由此产生的大规模无限期线性线性系统,我们建议了强大的区块前置物,产生可缩放的结果,而独立于离散性和物理参数。数字结果证实了离散率的趋同率,以及线性解答器对于各种测试问题的坚固性。