We study learning algorithms when there is a mismatch between the distributions of the training and test datasets of a learning algorithm. The effect of this mismatch on the generalization error and model misspecification are quantified. Moreover, we provide a connection between the generalization error and the rate-distortion theory, which allows one to utilize bounds from the rate-distortion theory to derive new bounds on the generalization error and vice versa. In particular, the rate-distortion based bound strictly improves over the earlier bound by Xu and Raginsky even when there is no mismatch. We also discuss how "auxiliary loss functions" can be utilized to obtain upper bounds on the generalization error.


翻译:当学习算法的培训分布和测试数据集的分布不匹配时,我们学习算法。这种不匹配对一般错误和模型区分错误的影响是量化的。此外,我们提供了一般错误和率扭曲理论之间的联系,允许人们利用率扭曲理论的界限来得出关于一般错误的新界限,反之亦然。特别是,基于费率扭曲的严格约束性改善了Xu和Raginsky先前约束的范围,即使没有不匹配的情况。我们还讨论了如何利用“辅助损失功能”来获得普遍错误的上限。

0
下载
关闭预览

相关内容

学习方法的泛化能力(Generalization Error)是由该方法学习到的模型对未知数据的预测能力,是学习方法本质上重要的性质。现实中采用最多的办法是通过测试泛化误差来评价学习方法的泛化能力。泛化误差界刻画了学习算法的经验风险与期望风险之间偏差和收敛速度。一个机器学习的泛化误差(Generalization Error),是一个描述学生机器在从样品数据中学习之后,离教师机器之间的差距的函数。
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
101+阅读 · 2020年7月16日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
12+阅读 · 2019年12月19日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Hardness-Aware Deep Metric Learning
Arxiv
6+阅读 · 2019年3月13日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
4+阅读 · 2018年4月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
读论文Discriminative Deep Metric Learning for Face and KV
统计学习与视觉计算组
12+阅读 · 2018年4月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员