Multilevel Stein variational gradient descent is a method for particle-based variational inference that leverages hierarchies of surrogate target distributions with varying costs and fidelity to computationally speed up inference. The contribution of this work is twofold. First, an extension of a previous cost complexity analysis is presented that applies even when the exponential convergence rate of single-level Stein variational gradient descent depends on iteration-varying parameters. Second, multilevel Stein variational gradient descent is applied to a large-scale Bayesian inverse problem of inferring discretized basal sliding coefficient fields of the Arolla glacier ice. The numerical experiments demonstrate that the multilevel version achieves orders of magnitude speedups compared to its single-level version.
翻译:Translated abstract:
多级斯坦变分梯度下降是一种粒子贝叶斯推断方法,可以利用不同成本和准确度的伪目标分布的层次结构来加速推断。本文的贡献有两个方面。首先,扩展了先前的成本复杂度分析,即使单级斯坦变分梯度下降的指数收敛速率取决于迭代参数,也可以进行分析。其次,将多级斯坦变分梯度下降应用于推断阿罗拉(Arolla)冰川离散基础滑动系数场的大规模贝叶斯逆问题。数值实验表明,与单级版本相比,多级版本实现了几个数量级的加速。