With the development of data acquisition technology, multi-channel data is collected and widely used in many fields. Most of them can be expressed as various types of vector functions. Feature extraction of vector functions for identifying certain patterns of interest is a critical but challenging task. In this paper, we focus on constructing moment invariants of general vector functions. Specifically, we define rotation-affine transform to describe real deformations of general vector functions, and then design a structural frame to systematically generate Gaussian-Hermite moment invariants to this transform model. This is the first time that a uniform frame has been proposed in the literature to construct orthogonal moment invariants of general vector functions. Given a certain type of multi-channel data, we demonstrate how to utilize the new method to derive all possible invariants and to eliminate various dependences among them. For RGB images, 2D and 3D flow fields, we obtain the complete and independent sets of the invariants with low orders and low degrees. Based on synthetic and popular datasets of vector-valued data, the experiments are carried out to evaluate the stability and discriminability of these invariants, and also their robustness to noise. The results clearly show that the moment invariants proposed in our paper have better performance than other previously used moment invariants of vector functions in RGB image classification, vortex detection in 2D vector fields and template matching for 3D flow fields.


翻译:随着数据获取技术的开发,多通道数据被收集并广泛用于许多领域,其中多数数据可以表现为不同种类的矢量功能。从矢量函数中抽取用于确定某些关注模式的矢量功能是一项关键但具有挑战性的任务。在本文件中,我们的重点是构建一般矢量函数的瞬时变体。具体地说,我们定义旋转-ffine变形,以描述一般矢量函数的真正变形,然后设计一个结构框架,系统生成高山-赫米特时刻的变异性到这一变异模式。这是首次在文献中提出统一框架,以构建一般矢量函数的变异性或异性时数。鉴于某种类型的多渠道数据,我们展示如何使用新方法来生成所有可能的矢量函数的瞬间变异性。对于一般矢量函数的变异性,我们定义了一个结构框架,以系统生成完整和独立的变异性体分布在这种变异性模型中。基于病媒估值数据的合成和流行数据集,进行了实验,以评价一般的矢量变体变化过程的动态和变异性,这些变体先前的变体的变体在纸性方面的表现比在纸性中更明显地显示。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月15日
ResT V2: Simpler, Faster and Stronger
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员