A key property of the linear Boltzmann semiconductor model is that as the collision frequency tends to infinity, the phase space density $f = f(x,v,t)$ converges to an isotropic function $M(v)\rho(x,t)$, called the drift-diffusion limit, where $M$ is a Maxwellian and the physical density $\rho$ satisfies a second-order parabolic PDE known as the drift-diffusion equation. Numerical approximations that mirror this property are said to be asymptotic preserving. In this paper we build two discontinuous Galerkin methods to the semiconductor model: one with the standard upwinding flux and the other with a $\varepsilon$-scaled Lax-Friedrichs flux, where 1/$\varepsilon$ is the scale of the collision frequency. We show that these schemes are uniformly stable in $\varepsilon$ and are asymptotic preserving. In particular, we discuss what properties the discrete Maxwellian must satisfy in order for the schemes to converge in $\varepsilon$ to an accurate $h$-approximation of the drift diffusion limit. Discrete versions of the drift-diffusion equation and error estimates in several norms with respect to $\varepsilon$ and the spacial resolution are also included.


翻译:线性玻尔兹曼半导体模型的关键属性在于,当碰撞频率趋近于无穷大时,相空间密度$f = f(x,v,t)$ 收敛于一个各向同性函数$M(v)\rho(x,t)$,称为漂移扩散极限,其中$M$是一个Maxwell函数,物理密度$\rho$满足一个二阶抛物型PDE,被称为漂移扩散方程。模拟这种属性的数值逼近被称为渐近保持。在本文中,我们为半导体模型构建了两种间断Galerkin方法:一种具有标准上风通量,另一种具有$\varepsilon$-缩放的Lax-Friedrichs通量,其中1/$\varepsilon$是碰撞频率的尺度。我们证明这些方案在$\varepsilon$中是一致稳定的,并且是渐近保持的。特别地,我们讨论了离散Maxwell函数必须具有哪些性质,以便于这些方案在$\varepsilon$中收敛于漂移扩散极限的准确$h$-逼近。还包括漂移扩散方程的离散版本和关于$\varepsilon$和空间分辨率的几个范数的误差估计。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
76+阅读 · 2021年3月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习常见模式LogSumExp解密
论智
21+阅读 · 2018年10月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月5日
VIP会员
相关资讯
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
机器学习常见模式LogSumExp解密
论智
21+阅读 · 2018年10月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员