项目名称: 流体最优控制问题的有限体积法

项目编号: No.11461013

项目类型: 地区科学基金项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 罗贤兵

作者单位: 贵州大学

项目金额: 36万元

中文摘要: 流体控制问题来源于很多科学与工程实际,比如大气污染控制,河流的污染控制,海军舰艇的流体控制,航天器的设计等。有限体积法具有很好的守恒性(质量守恒,动量守恒、能量守恒等),是微分方程数值近似的一种有效方法, 特别适合于流体类问题的数值近似,现有的文献主要是从优化的角度来研究,或者从微分方程数值解的角度用差分法或者有限元法来研究流体控制问题。本项目拟从微分方程数值解的角度用有限体积元法来研究流体最优控制问题的数值近似。 我们主要对二维(不局限于二维)Navier-Stokes最优控制问题有限体法的数值近似进行系统的探讨。主要研究:(1)对先优化后离散的离散系统,利用变分不等式的结论讨论其解的存在唯一性;(2)探讨有限体数值解的收敛性、超收敛性以及后验误差分析及自适应计算;(3)将理论与某个实际问题结合,对此实际问题作指导。项目的研究有助于完善流体控制问题的研究和应用,也有助于学科团队的发展。

中文关键词: 流体最优控制;有限体积元法;Navier-Stokes方程;收敛性;误差估计

英文摘要: Fluid control problem comes from many scientific and engineering practices, such as river pollution control, air pollution control,fluid control naval, design of spacecraft, etc. Finite volume element method which has very good conservational properties (mass conservation, momentum conservation, energy conservation, etc.) is an effective method to approximate differential equation. So it very suitable for the numerical simulation of fluid problems. In the literature, some optimization algrithms for these problems are proposed. And finite difference method or finite element method are used to approximate these problems.This project intends to study the numerical approximation for the fluid control problem using finite volume element method. We mainly discuss the numerical soltion for 2D (not limited to 2D) Navier-Stokes optimal control problems using the finite volume element method. The main research is:(1)Prove the existance and uniqueness for the discrete system got by optimize-then-discretize approach using some results of variational inequality;(2) Investigate convergence, superconvergence, posteriori error estimates and adaptive computing of numerical approximation for the flow control problems;(3)Apply to practical problems and Guide for the application. The research project is helpful to the perfect and application of the study for the fluid control. It also has the construction and contributed to the development of the academic group.

英文关键词: flow optimal control problems;finite volume element method;Navier-Stokes equation;convergent property;error estimates

成为VIP会员查看完整内容
0

相关内容

专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
125+阅读 · 2021年8月25日
专知会员服务
133+阅读 · 2021年2月17日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
45+阅读 · 2020年5月23日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
强化学习和最优控制的《十个关键点》81页PPT汇总
专知会员服务
103+阅读 · 2020年3月2日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
从动力学角度看优化算法:GAN的第三个阶段
PaperWeekly
11+阅读 · 2019年5月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2021年1月14日
Arxiv
16+阅读 · 2020年5月20日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
小贴士
相关VIP内容
专知会员服务
32+阅读 · 2021年9月14日
专知会员服务
125+阅读 · 2021年8月25日
专知会员服务
133+阅读 · 2021年2月17日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
45+阅读 · 2020年5月23日
【Nature论文】深度网络中的梯度下降复杂度控制
专知会员服务
38+阅读 · 2020年3月9日
强化学习和最优控制的《十个关键点》81页PPT汇总
专知会员服务
103+阅读 · 2020年3月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员