This paper defines multidimensional sequential optimization numbers and prove that the unsigned Stirling numbers of first kind are 1-dimensional sequential optimization numbers. This paper gives a recurrence formula and an upper bound of multidimensional sequential optimization numbers. We proof that the k-dimensional sequential optimization numbers, denoted by O_k (n,m), are almost in {O_k (n,a)}, where a belong to[1,eklog(n-1)+(epi)^2/6(2^k-1)+M_1], n is the size of k-dimensional sequential optimization numbers and M_1 is large positive integer. Many achievements of the Stirling numbers of first kind can be transformed into the properties of k-dimensional sequential optimization numbers by k-dimensional extension and we give some examples. Shortest weight-constrained path is NP-complete problem [1]. In the case of edge symmetry and weight symmetry, we use the definition of the optimization set to design 2-dimensional Bellman-Ford algorithm to solve it. According to the fact that P_1 (n,m>M) less than or equal to e^(-M_1 ), where M=elog(n-1)+e+M_1, M_1 is a positive integer and P_1 (n,m) is the probability of 1-dimensional sequential optimization numbers, this paper conjecture that the probability of solving edge-symmetry and weight-symmetry shortest weight-constrained path problem in polynomial time approaches 1 exponentially with the increase of constant term in algorithm complexity. The results of a large number of simulation experiments agree with this conjecture.
翻译:本文定义了多维的顺序优化数字, 并证明第一个种类的未签名 Stirling 数字是 1 维次的顺序优化数字。 本文给出了一个重现公式和多维的顺序优化数字的上限。 我们证明由 O_ k (n, m) 表示的 k 维次的顺序优化数字几乎是 {O_ k (n, a) }, 其中属于 [ 1, eklog( n) +( epi) + (epi) 2/6 ( 2 ⁇ k-1) +M_ 1), n 是 k- 维次的精度序列优化数字的大小, M_ 1 的精度的精度的精度数值可以转换为 k- 维次的顺序优化数字的属性。 最短的重量限制路径是 NP- 完整的问题 [1] 。 在边缘的对称和重量的对称中, 我们使用最优化的设置来设计 2 维度 Bellman- Ford 算法的算法, M_ 1 的精度精度的精度精度的精度精度的精度计算方法, 和精度的精度的精度的精度的精度的精度的精度的精度的精度, 其中的精度是1 m_ m_ 1 的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度, 的精度的精度的精度的精度, 的精度的精度的精度的精度, 的精度的精度的精度的精度的精度的精度 1 m1 m1 m_ 的精度 1, 的精度的精度 1 的精度的精度的精度是的精度的精度是的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度 1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1 m1