An intensive line of research on fixed parameter tractability of integer programming is focused on exploiting the relation between the sparsity of a constraint matrix $A$ and the norm of the elements of its Graver basis. In particular, integer programming is fixed parameter tractable when parameterized by the primal tree-depth and the entry complexity of $A$, and when parameterized by the dual tree-depth and the entry complexity of $A$; both these parameterization imply that $A$ is sparse, in particular, the number of its non-zero entries is linear in the number of columns or rows, respectively. We study preconditioners transforming a given matrix to an equivalent sparse matrix if it exists and provide structural results characterizing the existence of a sparse equivalent matrix in terms of the structural properties of the associated column matroid. In particular, our results imply that the $\ell_1$-norm of the Graver basis is bounded by a function of the maximum $\ell_1$-norm of a circuit of $A$. We use our results to design a parameterized algorithm that constructs a matrix equivalent to an input matrix $A$ that has small primal/dual tree-depth and entry complexity if such an equivalent matrix exists. Our results yield parameterized algorithms for integer programming when parameterized by the $\ell_1$-norm of the Graver basis of the constraint matrix, when parameterized by the $\ell_1$-norm of the circuits of the constraint matrix, when parameterized by the smallest primal tree-depth and entry complexity of a matrix equivalent to the constraint matrix, and when parameterized by the smallest dual tree-depth and entry complexity of a matrix equivalent to the constraint matrix.
翻译:对整数编程的固定参数可分化的研究,重点是利用限制矩阵的宽度($A$)和其渐变基元素的规范之间的关系。特别是,当原始树深度和入项复杂性($A美元)参数化时,整数编程是固定参数可分化的,当双树深度和入项复杂性($A美元)参数化时,这两个参数化都意味着美元是稀释的,特别是其非零条目的数量在列数或行数的复杂度中是线性。我们研究的是将一个特定矩阵的深度转换为一个等值的稀散矩阵。我们研究的是,如果存在的话,则整数编程的精度($A$)是固定参数化的,并且提供结构性结果,说明在相关的列列数结构化的精度($美元)的精度($)的精度($)矩阵化的精度($美元)的精度值。当我们用原始/数矩阵的精度($)的精度矩阵化的精度($)进数($)的精度($)矩阵化的精度($)矩阵化的精度($)矩阵的精度时,当我们通过树的精度的精度的精度的精度的精度化的精度(l化的精度)矩阵的精度的进进进化的精度($)的精度)矩阵的精度(l)的精度(x的精度)的精度(x基质化的精度)矩阵)的精度(l)矩阵)矩阵)的精度化的精度(我们的精度化的精度(B质化的精度(x的精度)的精度(x的精度)的精度(x的精度)的精度)矩阵)矩阵)矩阵)的精度(x的精度的精度(x的精度的精度的精度化的精度)的精度化的精度化的基质化的精度时,当的精度的精度的精度化的精度的精度的精度(B的精度的精度的精度的精度的精度的精度的精度,当的精度的精度的精度的精度