Let $\Psi(x,y)$ count the number of positive integers $n\le x$ such that every prime divisor of $n$ is at most $y$. Given inputs $x$ and $y$, what is the best way to estimate $\Psi(x,y)$? We address this problem in three ways: with a new algorithm to estimate $\Psi(x,y)$, with a performance improvement to an established algorithm, and with empirically based advice on how to choose an algorithm to estimate $\Psi$ for the given inputs. Our new algorithm to estimate $\Psi(x,y)$ is based on Ennola's second theorem [Ennola69], which applies when $y< (\log x)^{3/4-\epsilon}$ for $\epsilon>0$. It takes $O(y^2/\log y)$ arithmetic operations of precomputation and $O(y\log y)$ operations per evaluation of $\Psi$. We show how to speed up Algorithm HT, which is based on the saddle-point method of Hildebrand and Tenenbaum [1986], by a factor proportional to $\log\log x$, by applying Newton's method in a new way. And finally we give our empirical advice based on five algorithms to compute estimates for $\Psi(x,y)$.The challenge here is that the boundaries of the ranges of applicability, as given in theorems, often include unknown constants or small values of $\epsilon>0$, for example, that cannot be programmed directly.


翻译:Lets\ Psi( x, y) 美元计数正整数数 $n\ lexx 美元, 这样每个正折数的正整数 $n\ lexx 美元, 这样每个正折数的正整数 $n\ lexx $ 美元最多 。 鉴于投入 $x 美元和 $y 美元, 估算美元 (xx,y) 的最佳方法是什么? 我们用三种方法解决这个问题: 使用一个新的算法来估算 $\ Psi(x,y) 美元, 并改进既定算法的性能改进, 以及根据经验建议如何选择一个算法来估算给给给给给给 $\ Psi 美元的估计 $\ Psi (x,y) 我们用来估算 $\ 美元 (x, 美元 美元) 的新算法以 Ennola 的速率 $x 。 我们用 以 美元 美元 方向, 以 数字 的 方法 向 方向 提供 方向 。 以 方向 以 方向 方向 方向 以 方向 以 方向 以 方向 以 方向 以 向 以 以 方向 以 直 向 直 向 直 向 直 向 向 直 。 直 直 直 直 直 直 。 直 向 向 。 向 向 的 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月29日
Arxiv
0+阅读 · 2022年9月28日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员