In modern contexts, some types of data are observed in high-resolution, essentially continuously in time. Such data units are best described as taking values in a space of functions. Subject units carrying the observations may have intrinsic relations among themselves, and are best described by the nodes of a large graph. It is often sensible to think that the underlying signals in these functional observations vary smoothly over the graph, in that neighboring nodes have similar underlying signals. This qualitative information allows borrowing of strength over neighboring nodes and consequently leads to more accurate inference. In this paper, we consider a model with Gaussian functional observations and adopt a Bayesian approach to smoothing over the nodes of the graph. We characterize the minimax rate of estimation in terms of the regularity of the signals and their variation across nodes quantified in terms of the graph Laplacian. We show that an appropriate prior constructed from the graph Laplacian can attain the minimax bound, while using a mixture prior, the minimax rate up to a logarithmic factor can be attained simultaneously for all possible values of functional and graphical smoothness. We also show that in the fixed smoothness setting, an optimal sized credible region has arbitrarily high frequentist coverage. A simulation experiment demonstrates that the method performs better than potential competing methods like the random forest. The method is also applied to a dataset on daily temperatures measured at several weather stations in the US state of North Carolina.
翻译:在现代环境下,某些类型的数据在高分辨率下观测,基本上在时间上持续观测。这类数据单位最好被描述为在功能空间中取值的模型。进行观测的对象单位之间可能有内在的关系,最好用大图的节点来描述。通常有理由认为,这些功能性观测中的基本信号与图表相比变化顺利,因为相邻的节点有着相似的基本信号。这种质量信息允许在相邻节点上借取力量,从而导致更准确的推断。在本文中,我们考虑一个模型,用高斯的功能观测和巴耶斯方法来平滑图形的节点。我们从信号的规律性角度来描述这些观察对象之间的内在关系,用大图的节点来描述它们之间的变化。我们发现,这些功能性观测信号的最小速率比小得多,从图的相邻的节点上构建一个适当的先前结构可以达到最小型的连接点,同时使用对数的对数率系数,然后用一种对数的对数调系数来计算所有可能的功能和图形的平滑度值。我们还用一种最可靠的北卡路方式来显示一种最优的模拟方法。在固定的森林的平滑度区域进行一种最优的模拟方法。一种最优的模拟。在最优的模拟方法,在最接近性地模拟的森林的模拟方法,在最接近性地模拟方法上显示一种最优的平滑度上显示一种最优的平的模拟方法。