In modern contexts, some types of data are observed in high-resolution, essentially continuously in time. Such data units are best described as taking values in a space of functions. Subject units carrying the observations may have intrinsic relations among themselves, and are best described by the nodes of a large graph. It is often sensible to think that the underlying signals in these functional observations vary smoothly over the graph, in that neighboring nodes have similar underlying signals. This qualitative information allows borrowing of strength over neighboring nodes and consequently leads to more accurate inference. In this paper, we consider a model with Gaussian functional observations and adopt a Bayesian approach to smoothing over the nodes of the graph. We characterize the minimax rate of estimation in terms of the regularity of the signals and their variation across nodes quantified in terms of the graph Laplacian. We show that an appropriate prior constructed from the graph Laplacian can attain the minimax bound, while using a mixture prior, the minimax rate up to a logarithmic factor can be attained simultaneously for all possible values of functional and graphical smoothness. We also show that in the fixed smoothness setting, an optimal sized credible region has arbitrarily high frequentist coverage. A simulation experiment demonstrates that the method performs better than potential competing methods like the random forest. The method is also applied to a dataset on daily temperatures measured at several weather stations in the US state of North Carolina.


翻译:在现代环境下,某些类型的数据在高分辨率下观测,基本上在时间上持续观测。这类数据单位最好被描述为在功能空间中取值的模型。进行观测的对象单位之间可能有内在的关系,最好用大图的节点来描述。通常有理由认为,这些功能性观测中的基本信号与图表相比变化顺利,因为相邻的节点有着相似的基本信号。这种质量信息允许在相邻节点上借取力量,从而导致更准确的推断。在本文中,我们考虑一个模型,用高斯的功能观测和巴耶斯方法来平滑图形的节点。我们从信号的规律性角度来描述这些观察对象之间的内在关系,用大图的节点来描述它们之间的变化。我们发现,这些功能性观测信号的最小速率比小得多,从图的相邻的节点上构建一个适当的先前结构可以达到最小型的连接点,同时使用对数的对数率系数,然后用一种对数的对数调系数来计算所有可能的功能和图形的平滑度值。我们还用一种最可靠的北卡路方式来显示一种最优的模拟方法。在固定的森林的平滑度区域进行一种最优的模拟方法。一种最优的模拟。在最优的模拟方法,在最接近性地模拟的森林的模拟方法,在最接近性地模拟方法上显示一种最优的平滑度上显示一种最优的平的模拟方法。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2019年11月14日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关VIP内容
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员