Stochastic games combine controllable and adversarial non-determinism with stochastic behavior and are a common tool in control, verification and synthesis of reactive systems facing uncertainty. Multi-objective stochastic games are natural in situations where several - possibly conflicting - performance criteria like time and energy consumption are relevant. Such conjunctive combinations are the most studied multi-objective setting in the literature. In this paper, we consider the dual disjunctive problem. More concretely, we study turn-based stochastic two-player games on graphs where the winning condition is to guarantee at least one reachability or safety objective from a given set of alternatives. We present a fine-grained overview of strategy and computational complexity of such disjunctive queries (DQs) and provide new lower and upper bounds for several variants of the problem, significantly extending previous works. We also propose a novel value iteration-style algorithm for approximating the set of Pareto optimal thresholds for a given DQ.


翻译:托盘游戏将可控性和对抗性非决定性行为与随机性行为结合起来,是控制、核查和合成面临不确定性的反应系统的共同工具。多目标随机性游戏在以下情况下是自然的:一些性能标准可能相互冲突,例如时间和能源消耗具有相关性。这种结合性组合是文献中研究最多的多目标设置。在本文中,我们考虑了双重分解问题。更具体地说,我们研究了图表上基于翻转的随机双玩游戏,其中的胜选条件是保证至少能够达到一组特定替代品的可达性或安全目标。我们提出了关于这种脱钩性查询(DQs)的战略和计算复杂性的精细的概览,并为问题的若干变式提供了新的下限和上限,大大扩展了先前的作品。我们还提出了一种新颖的代谢式算法,用于对给定的 DQ 设定的帕雷托最佳阈值进行匹配。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
0+阅读 · 2021年11月8日
Arxiv
5+阅读 · 2017年12月14日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员