In the past decade, object detection has achieved significant progress in natural images but not in aerial images, due to the massive variations in the scale and orientation of objects caused by the bird's-eye view of aerial images. More importantly, the lack of large-scale benchmarks has become a major obstacle to the development of object detection in aerial images (ODAI). In this paper,we present a large-scale Dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI. The proposed DOTA dataset contains 1,793,658 object instances of 18 categories of oriented-bounding-box annotations collected from 11,268 aerial images. Based on this large-scale and well-annotated dataset, we build baselines covering 10 state-of-the-art algorithms with over 70 configurations, where the speed and accuracy performances of each model have been evaluated. Furthermore, we provide a code library for ODAI and build a website for evaluating different algorithms. Previous challenges run on DOTA have attracted more than 1300 teams worldwide. We believe that the expanded large-scale DOTA dataset, the extensive baselines, the code library and the challenges can facilitate the designs of robust algorithms and reproducible research on the problem of object detection in aerial images.
翻译:过去十年来,天体探测在自然图像方面取得了显著进展,但在航空图像方面没有取得显著进展。由于鸟类对空中图像视视视鸟的空中图像,天体物体的大小和方向变化导致天体物体的规模和方向发生巨大变化,物体探测在自然图像方面取得了显著进展,但在航空图像中,物体探测在自然图像方面没有取得显著进展,但由于鸟类对空中图像视视视的空中图像造成天体物体物体物体的大小和定向方向发生巨大变化,物体探测在自然图像方面没有取得显著进展,在过去十年中,物体探测物体探测在自然图像的自然图像(ODIAI)方面取得了显著进展,但空中图像方面没有取得显著进展。由于鸟类对空中图像的视视视视视视视视视视视视视图,物体的自然图像在自然图像(ODITA)视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视的物体视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视的物体视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视视