This research delves into the intricate landscape of Musculoskeletal Disorder (MSD) risk factors, employing a novel fusion of Natural Language Processing (NLP) techniques and mode-based ranking methodologies. The primary objective is to advance the comprehension of MSD risk factors, their classification, and their relative severity, facilitating more targeted preventive and management interventions. The study utilizes eight diverse models, integrating pre-trained transformers, cosine similarity, and various distance metrics to classify risk factors into personal, biomechanical, workplace, psychological, and organizational classes. Key findings reveal that the BERT model with cosine similarity attains an overall accuracy of 28%, while the sentence transformer, coupled with Euclidean, Bray-Curtis, and Minkowski distances, achieves a flawless accuracy score of 100%. In tandem with the classification efforts, the research employs a mode-based ranking approach on survey data to discern the severity hierarchy of MSD risk factors. Intriguingly, the rankings align precisely with the previous literature, reaffirming the consistency and reliability of the approach. ``Working posture" emerges as the most severe risk factor, emphasizing the critical role of proper posture in preventing MSDs. The collective perceptions of survey participants underscore the significance of factors like "Job insecurity," "Effort reward imbalance," and "Poor employee facility" in contributing to MSD risks. The convergence of rankings provides actionable insights for organizations aiming to reduce the prevalence of MSDs. The study concludes with implications for targeted interventions, recommendations for improving workplace conditions, and avenues for future research.
翻译:暂无翻译