Dynamic Algorithm Configuration (DAC) tackles the question of how to automatically learn policies to control parameters of algorithms in a data-driven fashion. This question has received considerable attention from the evolutionary community in recent years. Having a good benchmark collection to gain structural understanding on the effectiveness and limitations of different solution methods for DAC is therefore strongly desirable. Following recent work on proposing DAC benchmarks with well-understood theoretical properties and ground truth information, in this work, we suggest as a new DAC benchmark the controlling of the key parameter $\lambda$ in the $(1+(\lambda,\lambda))$~Genetic Algorithm for solving OneMax problems. We conduct a study on how to solve the DAC problem via the use of (static) automated algorithm configuration on the benchmark, and propose techniques to significantly improve the performance of the approach. Our approach is able to consistently outperform the default parameter control policy of the benchmark derived from previous theoretical work on sufficiently large problem sizes. We also present new findings on the landscape of the parameter-control search policies and propose methods to compute stronger baselines for the benchmark via numerical approximations of the true optimal policies.
翻译:动态算法配置(DAC) 解决如何以数据驱动的方式自动学习控制算法参数的政策的问题。 这个问题近年来已经受到进化界的极大关注。 因此,极有必要开展一个良好的基准收集工作,以便从结构上了解发援会不同解决方案方法的有效性和局限性。 最近在提出发援会基准时,充分理解了理论属性和地面真相信息。 在这项工作中,我们建议,作为新的发援会基准,以美元(1+(lambda, glambda)) $~ Genetic Algorithm 来控制关键参数 $\ lambda$, 用于解决 OneMax 问题。我们开展了一项研究,研究如何通过使用基准上的(静态)自动算法配置来解决发援会问题,并提出了大幅改进该方法绩效的方法。 我们的方法能够一贯地超越从以往关于足够大问题规模的理论工作中得出的基准默认参数控制参数政策控制政策。 我们还提出了关于参数搜索政策的全局的新发现,并提出了通过最精确的数值接近度为基准配置更强基线的方法。</s>