We consider the problem of recovering an unknown $k$-factor, hidden in a weighted random graph. For $k=1$ this is the planted matching problem, while the $k=2$ case is closely related to the planted travelling salesman problem. The inference problem is solved by exploiting the information arising from the use of two different distributions for the weights on the edges inside and outside the planted sub-graph. We argue that, in the large size limit, a phase transition can appear between a full and a partial recovery phase as function of the signal-to-noise ratio. We give a criterion for the location of the transition.
翻译:我们考虑了在加权随机图中找到一个未知的1美元因素的问题。对于1美元来说,这是一个种植匹配问题,而2美元的情况与种植流动推销员问题密切相关。通过利用对种植子图内外边缘重量使用两种不同分布方法所产生的信息,可以解决推论问题。我们认为,在幅员大的限度内,完全恢复阶段和部分恢复阶段之间的阶段过渡可以作为信号对噪音比率的函数。我们给出了过渡地点的标准。