Given a function $u\in L^2=L^2(D,\mu)$, where $D\subset \mathbb R^d$ and $\mu$ is a measure on $D$, and a linear subspace $V_n\subset L^2$ of dimension $n$, we show that near-best approximation of $u$ in $V_n$ can be computed from a near-optimal budget of $Cn$ pointwise evaluations of $u$, with $C>1$ a universal constant. The sampling points are drawn according to some random distribution, the approximation is computed by a weighted least-squares method, and the error is assessed in expected $L^2$ norm. This result improves on the results in [6,8] which require a sampling budget that is sub-optimal by a logarithmic factor, thanks to a sparsification strategy introduced in [17,18]. As a consequence, we obtain for any compact class $\mathcal K\subset L^2$ that the sampling number $\rho_{Cn}^{\rm rand}(\mathcal K)_{L^2}$ in the randomized setting is dominated by the Kolmogorov $n$-width $d_n(\mathcal K)_{L^2}$. While our result shows the existence of a randomized sampling with such near-optimal properties, we discuss remaining issues concerning its generation by a computationally efficient algorithm.
翻译:3⁄2 ̄ ̧漯B = L2= L2= L2 = L2 2(D,\ mu)$ 函数, $D\ subset = subset = mathbb Rád美元 和 $\ mu$ 美元是美元美元的一个量度, 而一个线性子空间 $V_ n\ subset L2 $的维维维度值值值值为$00美元, 我们显示, 几乎最佳的近似近似接近于 $1美元以 V_ n 美元为美元, 美元为通用常数。 取样点是根据某些随机分布绘制的, 近似值以加权的最小值为美元计算, 接近值以预期的 $L2 标准为 。 这个结果在 [6,8] 中的结果要求采样预算以对数值进行亚优度, 由于在 [17, 18] 引入了一种惊吓战略。 因此, 我们从任何紧要级的 K\ subset set set locet L2 $rho_ cal_ cal_rhocal lexn romaxn rocal lexn roomalalalal lax an_ krusalal_ krmaxn krma____ lansal_ = krma}