Recovering a planted vector $v$ in an $n$-dimensional random subspace of $\mathbb{R}^N$ is a generic task related to many problems in machine learning and statistics, such as dictionary learning, subspace recovery, and principal component analysis. In this work, we study computationally efficient estimation and detection of a planted vector $v$ whose $\ell_4$ norm differs from that of a Gaussian vector with the same $\ell_2$ norm. For instance, in the special case of an $N \rho$-sparse vector $v$ with Rademacher nonzero entries, our results include the following: (1) We give an improved analysis of (a slight variant of) the spectral method proposed by Hopkins, Schramm, Shi, and Steurer, showing that it approximately recovers $v$ with high probability in the regime $n \rho \ll \sqrt{N}$. In contrast, previous work required either $\rho \ll 1/\sqrt{n}$ or $n \sqrt{\rho} \lesssim \sqrt{N}$ for polynomial-time recovery. Our result subsumes both of these conditions (up to logarithmic factors) and also treats the dense case $\rho = 1$ which was not previously considered. (2) Akin to $\ell_\infty$ bounds for eigenvector perturbation, we establish an entrywise error bound for the spectral estimator via a leave-one-out analysis, from which it follows that thresholding recovers $v$ exactly. (3) We study the associated detection problem and show that in the regime $n \rho \gg \sqrt{N}$, any spectral method from a large class (and more generally, any low-degree polynomial of the input) fails to detect the planted vector. This establishes optimality of our upper bounds and offers evidence that no polynomial-time algorithm can succeed when $n \rho \gg \sqrt{N}$.


翻译:以 $\ ell_ gg 标准值 $@ 美元重现一个植入的矢量 $n 以维度随机亚空间 $\ mathb{R ⁇ N$ 是一个与机器学习和统计方面的许多问题有关的通用任务, 例如字典学习、 子空间恢复和主要组件分析。 在这项工作中, 我们研究一个植入的矢量 $v$的计算效率估算和检测, 其美元标准与高氏矢量的概率不同, 相同 $\ ell_ 2美元 标准。 例如, 在一个名为 N\ rho$ 的磁量矢量, 美元 美元与 Rademacher 的非零条目, 我们的结果包括:(1) 我们改进了对霍普金斯、 Schramm、 Shi 和 Steur 提议的光谱方法的分析, 显示它大约回收了$v$美元, $rholl\ sqr@ t} 标准。 当我们之前的光量值解算值 和 亚氏 解算值的數值分析结果中, 其结果可以由1\ rqrus rus rus 解到 解到 or oral 的结果, rmexmexmexmexm 。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
The complexity of the Bondage problem in planar graphs
Arxiv
0+阅读 · 2021年7月22日
Arxiv
0+阅读 · 2021年7月21日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员