The problem of finding maximum (or minimum) witnesses of the Boolean product of two Boolean matrices (MW for short) has a number of important applications, in particular the all-pairs lowest common ancestor (LCA) problem in directed acyclic graphs (dags). The best known upper time-bound on the MW problem for n\times n Boolean matrices of the form O(n^{2.575}) has not been substantially improved since 2006. In order to obtain faster algorithms for this problem, we study quantum algorithms for MW and approximation algorithms for MW (in the standard computational model). Some of our quantum algorithms are input or output sensitive. Our fastest quantum algorithm for the MW problem, and consequently for the related problems, runs in time \tilde{O}(n^{2+\lambda/2})=\tilde{O}(n^{2.434}), where \lambda satisfies the equation \omega(1, \lambda, 1) = 1 + 1.5 \, \lambda and \omega(1, \lambda, 1) is the exponent of the multiplication of an n \times n^{\lambda}$ matrix by an n^{\lambda} \times n matrix. Next, we consider a relaxed version of the MW problem (in the standard model) asking for reporting a witness of bounded rank (the maximum witness has rank 1) for each non-zero entry of the matrix product. First, by adapting the fastest known algorithm for maximum witnesses, we obtain an algorithm for the relaxed problem that reports for each non-zero entry of the product matrix a witness of rank at most \ell in time \tilde{O}((n/\ell)n^{\omega(1,\log_n \ell,1)}). Then, by reducing the relaxed problem to the so called k-witness problem, we provide an algorithm that reports for each non-zero entry C[i,j] of the product matrix C a witness of rank O(\lceil W_C(i,j)/k\rceil ), where W_C(i,j) is the number of witnesses for C[i,j], with high probability. The algorithm runs in \tilde{O}(n^{\omega}k^{0.4653} +n^2k) time, where \omega=\omega(1,1,1).


翻译:(n\\\\\\2.575}) 找到两个运算器(MW) 的最大(或最小) 证人的布尔级产品的问题有许多重要的应用, 特别是导向环形图( dags) 中所有帕最低的普通始发者( LCA) 问题。 在表O(n\\\\\\2.575}) 的ntime 上已知的MW问题的上限时间范围( 或最低) 。 2006年以来, 在为此问题获取快速的算法时, 我们为 MW 和 MW 近似算法研究量算法( 在标准计算模型中 ) 。 我们的一些量算法是输入的或输出的 。 我们对于 MWA 问题, 因此, 我们最快的量算算法在时间 {\\\\\ lambda} 中运行的量值运算, 时间 (n\\\\\\ a lama) 时间, 时间的每个解算器解算器解算器解算器的下, 。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
【 关关的刷题日记47】Leetcode 38. Count and Say
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月20日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
车辆目标检测
数据挖掘入门与实战
30+阅读 · 2018年3月30日
【 关关的刷题日记47】Leetcode 38. Count and Say
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员