We consider the problem of constructing confidence intervals for the locations of change points in a high-dimensional mean shift model. To that end, we develop a locally refitted least squares estimator and obtain component-wise and simultaneous rates of estimation of the underlying change points. The simultaneous rate is the sharpest available in the literature by at least a factor of $\log p,$ while the component-wise one is optimal. These results enable existence of limiting distributions. Component-wise distributions are characterized under both vanishing and non-vanishing jump size regimes, while joint distributions for any finite subset of change point estimates are characterized under the latter regime, which also yields asymptotic independence of these estimates. The combined results are used to construct asymptotically valid component-wise and simultaneous confidence intervals for the change point parameters. The results are established under a high dimensional scaling, allowing for diminishing jump sizes, in the presence of diverging number of change points and under subexponential errors. They are illustrated on synthetic data and on sensor measurements from smartphones for activity recognition.
翻译:我们考虑了在高维中位移动模式中为变化点位置构建信任度间隔的问题。 为此,我们开发了一个本地改装的最小正方位估计值, 并获得基本变化点的元数和同步估计率。 同时率是文献中至少以美元/log p, 美元表示的最亮度, 而元数是最佳的。 这些结果使得限制分布得以存在。 构件分布以消失和非加速跳动大小制度为特征, 而任何有限的变化点估计子集的联合分布在后一种制度下都有特征, 后一种制度也产生这些估计的零碎度独立性。 合并结果用于构建变化点参数的偶然有效组成部分和同步信任间隔。 其结果在高维缩下建立, 允许降低跳动大小, 出现变化点数量的差异和亚加速误差。 它们用合成数据和智能手机的传感器测量进行演示, 以便活动识别。