Over the past decades, linear mixed models have attracted considerable attention in various fields of applied statistics. They are popular whenever clustered, hierarchical or longitudinal data are investigated. Nonetheless, statistical tools for valid simultaneous inference for mixed parameters are rare. This is surprising because one often faces inferential problems beyond the pointwise examination of fixed or mixed parameters. For example, there is an interest in a comparative analysis of cluster-level parameters or subject-specific estimates in studies with repeated measurements. We discuss methods for simultaneous inference assuming a linear mixed model. Specifically, we develop simultaneous prediction intervals as well as multiple testing procedures for mixed parameters. They are useful for joint considerations or comparisons of cluster-level parameters. We employ a consistent bootstrap approximation of the distribution of max-type statistic to construct our tools. The numerical performance of the developed methodology is studied in simulation experiments and illustrated in a data example on household incomes in small areas.
翻译:在过去几十年里,线性混合模型在应用统计的各个领域引起了相当大的注意,每当调查分组、等级或纵向数据时,这些模型都很受欢迎,然而,用于对混合参数进行有效同时推断的统计工具很少,这令人惊讶,因为人们常常面临超出对固定或混合参数进行点度审查的推断问题,例如,在反复测量的研究中有兴趣对集群参数或特定主题估计数进行比较分析,我们讨论假设线性混合模型的同时推断方法。具体地说,我们制定同时预测间隔以及混合参数的多重测试程序,用于对集群参数进行联合考虑或比较。我们采用对最大类型统计数据的分布进行一致的近似镜来构建我们的工具。在模拟实验中研究所开发方法的数字性表现,并在小地区家庭收入数据实例中加以说明。