Neural Radiance Field (NeRF) is a powerful tool to faithfully generate novel views for scenes with only sparse captured images. Despite its strong capability for representing 3D scenes and their appearance, its editing ability is very limited. In this paper, we propose a simple but effective extension of vanilla NeRF, named PaletteNeRF, to enable efficient color editing on NeRF-represented scenes. Motivated by recent palette-based image decomposition works, we approximate each pixel color as a sum of palette colors modulated by additive weights. Instead of predicting pixel colors as in vanilla NeRFs, our method predicts additive weights. The underlying NeRF backbone could also be replaced with more recent NeRF models such as KiloNeRF to achieve real-time editing. Experimental results demonstrate that our method achieves efficient, view-consistent, and artifact-free color editing on a wide range of NeRF-represented scenes.
翻译:神经辐射场( NERF) 是一个强大的工具, 以忠实地为只捕捉到很少的图像的场景生成新观点。 尽管它代表 3D 场景及其外观的能力很强, 但其编辑能力却非常有限。 在本文中, 我们提出将香草 NERF (名为 PaletteNeRF) 的简单而有效的扩展, 以便在 NERF 代表的场景上进行高效的色彩编辑。 受最近基于调色板的图像分解工程的驱动, 我们将每种像素颜色相近为调和添加重量调制调色的调色之和。 我们的方法不是预测香草 NERF 中的像素颜色, 而是预测添加重量。 根基底 NERF 的脊椎还可以被更近的NERF 模型所取代, 如 Kilo NERF 实现实时编辑。 实验结果显示, 我们的方法在广泛的NERF 代表场景上实现了高效、 视觉和无物色的编辑。